Abstract

Antibiotic resistance is a major threat to human health. It is necessary to explore all the potential sources and comprehend the pathways that antibiotic resistance genes (ARGs) are transmitted. In this study, by applying high-throughput quantitative PCR and high-throughput sequencing, ARGs and microbial community structure were determined, to understand the reservoirs and spread of ARGs in the Xilingol grassland system. A total of 151,140 and 138 different ARGs were observed in manure, soil, and water samples, respectively. Only 12 ARGs were shared in all environmental and animal manure samples. Multidrug defense system, such as efflux pump, was the most dominant factor in manure and soil samples, followed by antibiotic deactivation processes. These genes coffering resistance to major classes of antibiotics including β_Lactamase (blaSFO, fox5, blaCTX-M-04, blaOXY), vancomycin (vanC-03, vanXD), MLSB (vatE-01, mphA-01), aminoglycoside (aadA2-01), Multidrug (oprJ) and others (oprD, qacEdelta1-02), except sulfonamide and tetracycline. The 12 ARGs were significantly enriched in water samples compared to manure and soil samples (p < 0.01) and demonstrated that the water environment was an important transmission source of ARGs in the grassland. The highest enrichment was up to 324.5-fold. Moreover, the 12 shared ARGs were positively correlated with the mobile genetic elements (p < 0.01). The nonrandom co-occurrence network patterns between ARGs and microbial community suggested that a total of three bacterial phyla were viewed as the potential ARGs hosts. These findings indicate that ARGs were highly enriched in water samples, demonstrating that the water environment was a critical source and sink of ARGs in the grassland system. It may illuminate the mechanism stressing the effects of human activity on the occurrence and transmission of ARGs in the grassland system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.