Abstract
In this letter, we present an analytical method for studying the role of the micropatterned morphology of soft fingers with wet adhesion in grasping a deformable thin shell. This letter originated from a project on a robotic platform for autonomous attachment and removal of a soft contact lens in a “human eye” under a wet environment. In this scenario, a contact lens (hemispherical thin shell) was gripped by a soft-fingered hand in three conditions: inside/outside a liquid environment and when the contact lens was in contact with a convex curved substrate (as an eye). Two fingertip surfaces were compared: a flat surface, and a micropatterned surface inspired by the adhesion mechanism of a tree-frog's toes. The pattern of the latter comprised 3600 square cells, each of size 85 $\mu$ m × 85 $\mu$ m interspaced by 15 $\mu$ m. A proposed analytical model was utilized to evaluate the grasp forces in both types of fingertip surface. The forces were subsequently verified by application in grasping a contact lens. The experimental results showed good agreement with the analysis as the micropattern pad decreased the preload and deformation of the shell 1.1–2× lower than that of the flat surface. This letter could be extended to model grasping interfaces with deformable curvature objects in wet and high moisture content environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.