Abstract

Robotic grasping of deformable objects is difficult and under-researched, not simply due to the high computational cost of modeling. More fundamentally, several issues arise with the deformation of an object being grasped: a changing wrench space, growing finger contact areas, and pointwise varying contact modes inside these areas. Consequently, contact constraints needed for deformable modeling are hardly established at the beginning of the grasping operation. This paper presents a grasping strategy that squeezes the object with two fingers under specified displacements rather than forces. A ‘stable’ squeeze minimizes the potential energy for the same amount of squeezing, while a ‘pure’ squeeze ensures that the object undergoes no rigid body motion as it deforms. Assuming linear elasticity, a finite element analysis guarantees equilibrium and the uniqueness of deformation during a squeeze action. An event-driven algorithm tracks the contact regions as well as the modes of contact in their interiors under Coulomb friction, which in turn serve as the needed constraints for deformation update. Grasp quality is characterized as the amount of work performed by the grasping fingers in resisting a known push by some adversary finger. Simulation and multiple experiments have been conducted to validate the results over solid and ring-like 2D objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call