Abstract

In current minimally invasive surgery techniques, the tactile information available to the surgeon is limited. Improving tactile sensation could enhance the operability of surgical instruments. Considering surgical applications, requirements such as having electrical safety, a simple structure, and sterilization capability should be considered. The current study sought to develop a grasper that can measure grasping force at the tip, based on a previously proposed tactile sensing method using acoustic reflection. This method can satisfy the requirements for surgical applications because it has no electrical element within the part that is inserted into the patient's body. We integrated our acoustic tactile sensing method into a conventional grasping forceps instrument. We designed the instrument so that acoustic cavities within a grasping arm and a fork sleeve were connected by a small cavity in a pivoting joint. In this design, when the angle between the two grasping arms changes during grasping, the total length and local curvature of the acoustic cavity remain unchanged. Thus, the grasping force can be measured regardless of the orientation of the grasping arm. We developed a prototype sensorized grasper based on our proposed design. Fundamental tests revealed that sensor output increased with increasing contact force applied to the grasping arm, and the angle of the grasping arm did not significantly affect the sensor output. Moreover, the results of a grasping test, in which objects with different softness characteristics were held by the grasper, revealed that the grasping force could be appropriately adjusted to handle different objects on the basis of sensor output. Experimental results demonstrated that the prototype grasper can measure grasping force, enabling safe and stable grasping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call