Abstract

This paper presents a Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan of a capacitated batch-processing machine. Given a set of jobs and their processing times and sizes, the objective is to group these jobs into batches and schedule the batches on a single batch-processing machine such that the time taken to complete the last batch of jobs (or makespan) is minimized. The batch-processing machine can process a batch of jobs simultaneously as long as the total size of all the jobs in that batch does not exceed the machine capacity. The batch-processing time is equal to the longest processing time for a job in the batch. It has been shown that the problem under study is non-deterministic polynomial-time hard. Consequently, a GRASP approach was developed. The solution quality of GRASP was compared to other solution approaches such as simulated annealing, genetic algorithm, and a commercial solver through an experimental study. The study helps to conclude that GRASP outperforms other solution approaches, especially on larger problem instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.