Abstract
The belief functions (BFs) introduced by Shafer in the mid of 1970s are widely applied in information fusion to model epistemic uncertainty and to reason about uncertainty. Their success in applications is however limited because of their high-computational complexity in the fusion process, especially when the number of focal elements is large. To reduce the complexity of reasoning with BFs, we can envisage as a first method to reduce the number of focal elements involved in the fusion process to convert the original basic belief assignments (BBAs) into simpler ones, or as a second method to use a simple rule of combination with potentially a loss of the specificity and pertinence of the fusion result, or to apply both methods jointly. In this article, we focus on the first method and propose a new BBA granulation method inspired by the community clustering of nodes in graph networks. This article studies a novel efficient multigranular belief fusion (MGBF) method. Specifically, focal elements are regarded as nodes in the graph structure, and the distance between nodes will be used to discover the local community relationship of focal elements. Afterward, the nodes belonging to the decision-making community are specially selected, and then the derived multigranular sources of evidence can be efficiently combined. To evaluate the effectiveness of the proposed graph-based MGBF, we further apply this new approach to combine the outputs of convolutional neural networks + attention (CNN + Attention) in the human activity recognition (HAR) problem. The experimental results obtained with real datasets prove the potential interest and feasibility of our proposed strategy with respect to classical BF fusion methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.