Abstract

Our work focuses on the exploration of the internal relationships of signals in an individual sensor. In particular, we address the problem of not being able to evaluate such intrasensor relationships due to missing rich and explicit feature representation. To solve this problem, we propose GraphSensor, a graph attention network, with a shared-weight convolution feature encoder to generate the signal segments and learn the internal relationships between them. Furthermore, we enrich the representation of the features by utilizing a multi-head approach when creating the internal relationship graph. Compared with traditional multi-head approaches, we propose a more efficient convolution-based multi-head mechanism, which only requires 56% of model parameters compared with the best multi-head baseline as demonstrated in the experiments. Moreover, GraphSensor is capable of achieving state-of-the-art performance in the electroencephalography dataset and improving the accuracy by 13.8% compared to the best baseline in an inertial measurement unit (IMU) dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.