Abstract

Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node’s spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.