Abstract

An appleAk is the graph obtained from a chordless cycle Ck of length k ≥ 4 by adding a vertex that has exactly one neighbor on the cycle. The class of apple-free graphs is a common generalization of claw-free graphs and chordal graphs, two classes enjoying many attractive properties, including polynomial-time solvability of the maximum weight independent set problem. Recently, Brandstadt et al. showed that this property extends to the class of apple-free graphs. In the present paper, we study further generalization of this class called graphs without large apples: these are (Ak, Ak+1, . . .)-free graphs for values of k strictly greater than 4. The complexity of the maximum weight independent set problem is unknown even for k = 5. By exploring the structure of graphs without large apples, we discover a sufficient condition for claw-freeness of such graphs. We show that the condition is satisfied by bounded-degree and apex-minor-free graphs of sufficiently large tree-width. This implies an efficient solution to the maximum weight independent set problem for those graphs without large apples, which either have bounded vertex degree or exclude a fixed apex graph as a minor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.