Abstract

In this paper, only simple graphs are considered. A graph G is nonsingular if its adjacency matrix A(G) is nonsingular. A nonsingular graph G satisfies reciprocal eigenvalue property (property R) if the reciprocal of each eigenvalue of the adjacency matrix A(G) is also an eigenvalue of A(G) and G satisfies strong reciprocal eigenvalue property (property SR) if the reciprocal of each eigenvalue of the adjacency matrix A(G) is also an eigenvalue of A(G) and they both have the same multiplicities. From the definitions property SR implies property R. Furthermore, for some classes of graphs (for example, trees), it is known that these properties are equivalent. However, the equivalence of these two properties is not yet known for any nonsingular graph. In this article, it is shown that these properties are not equivalent in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.