Abstract
In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph as a minor. A set of four graphs is shown to be the obstruction set for the class of graphs with branchwidth at most three. Moreover, we give a safe and complete set of reduction rules for the graphs with branchwidth at most three. Using this set, a linear time algorithm is given that verifies if a given graph has branchwidth at most three, and, if so, outputs a minimum width branch decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.