Abstract
Let Γ be an undirected graph, V(Γ) the vertex set of Γ and G a subgroup of aut(Γ). For each vertex x ↦ V(Γ), let Γx denote the set of vertices adjacent to x in Γ and the permutation group induced on Γx. by the stabilizer Gx. For each i ≥ 1, will denote the pointwise stabilizer in Gx of the set of vertices at distance at most i from x in Γ. Letfor each i ≥ 1 and any set of vertices x, y, …, z of Γ. An s-path (or s-arc) is an (s + 1)-tuple (x0, x1, … xs) of vertices such that xi ↦ Γxi–1 for 1 ≤ i ≤ s and xi ╪ xi–2 for 2 ≤ i ≤ s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.