Abstract
We study and solve a new problem for the class of Lipschitz mappings (with respect to sub-Riemannian metrics) on Carnot groups. We introduce the new concept of graph for the functions on a Carnot group, and then the new concept of sub-Riemannian differentiability generalizing hc-differentiability. We prove that the mapping-“graphs” are almost everywhere differentiable in the new sense. For these mappings we define a concept of intrinsic measure and obtain an area formula for calculating this measure. By way of application, we find necessary and sufficient conditions on the class of surface-“graphs” under which they are minimal surfaces (with respect to the intrinsic measure of a surface).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.