Abstract

Indoor subarea localization can facilitate numerous location-based services, such as indoor navigation, indoor POI recommendation and mobile advertising. Most existing subarea localization approaches suffer from two bottlenecks, one is fingerprint-based methods require time-consuming site survey and another is triangulation-based methods are lack of scalability. In this paper, we propose a graph-based method for indoor subarea localization with zero-configuration. Zero-configuration means the proposed method can be directly employed in indoor environment without time-consuming site survey or pre-installing additional infrastructure. To accomplish this, we first utilize two unexploited characteristics of WiFi radio signal strength to generate logical floor graph and then formulate the problem of constructing fingerprint map as a graph isomorphism problem between logical floor graph and physical floor graph. In online localization phase, a Bayesian-based approach is utilized to estimate the unknown subarea. The proposed method has been implemented in a real-world shopping mall, and extensive experimental results show that the proposed method can achieve competitive performance comparing with existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.