Abstract
Analysis of extracellular recordings of neural action potentials (known as spikes) is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering that is performed in the feature space. Principal components analysis (PCA) is the most commonly used feature extraction method employed for neural spike recordings. To improve upon PCA's feature extraction performance for neural spike sorting, we revisit the PCA procedure to analyze its weaknesses and describe an improved feature extraction method. This paper proposes a linear feature extraction technique that we call graph-Laplacian features, which simultaneously minimizes the graph Laplacian and maximizes variance. The algorithm's performance is compared with PCA and a wavelet-coefficient-based feature extraction algorithm on simulated single-electrode neural data. A cluster-quality metric is proposed to quantitatively measure the algorithm performance. The results show that the proposed algorithm produces more compact and well-separated clusters compared to the other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.