Abstract

A novel approach to the deposition of polycrystalline diamond is presented. The technique is based on the hot filament chemical vapour deposition technique (HFCVD). While it is similar to a high plasma power “bias enhanced growth” HFCVD, it relies on a graphite filament rather than on a metal one. It was found that with an appropriate choice of the growth parameters, 4–9% CH 4 in H 2, filament temperature > 2200 °C, 25 mBar gas pressure, plasma power > 500 W, a long filament lifetime can be achieved, when a simultaneous deposition of graphitic carbon on the hot graphite filament and of nanocrystalline diamond on a substrate facing the filament assembly is realized. In this paper the growth of nanocrystalline diamond films and their characterization (SEM, XRD, AFM) are presented. While the technique is promising for low cost, large area deposition of nanocrystalline diamond films, also the growth of microcrystalline diamond has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.