Abstract

The graphitization of carbonaceous material (CM) in a high-pressure metamorphic gradient is characterized along a cross section in the Schistes Lustres formation, Western Alps. Along this 25-km cross section, both the CM precursor and the host-rock lithology are homogeneous, and the prograde evolution of the pressure–temperature metamorphic conditions from the lower blueschist-facies (13 kbar, 330 °C) to the eclogite-facies (20 kbar, 500 °C) is tightly constrained by literature data. Raman microspectroscopy shows that at the micrometre scale, this process is progressive and continuous with increasing metamorphic grade, and that the structure of CM is very sensitive to temperature variations. At the nanometre scale (HRTEM), the CM is composed of a mixture of a microporous phase and an onion-ring like phase, both known as non-graphitizing under the effect of temperature at ambient pressure. The HP–LT graphitization produces structurally and microtexturally heterogeneous CM. With increasing metamorphic grade, the graphitization of the two types of CM proceeds up to the triperiodic graphite stage because of microtextural and structural changes that are specific to each type of CM. The microporous material is progressively transformed into graphite through a macroporous transitional stage. In this case, graphitization mainly occurs on the pore walls as a result of pore growth. In the case of concentric onion-ring like material, graphitization occurs in the regions with the largest radius of curvature, i.e. on the outer part of the ring. In comparison with 1-bar experiments, pressure seems to induce microtextural changes, which allows the subsequent structural modifications of the starting material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.