Abstract

In this study, we fabricated graphitic carbon nitride (g-C3N4) nanosheets with embedded ZnCdS nanoparticles to form a type II heterojunction using a facile synthesis approach, and we used them for photocatalytic H2 production. The morphologies, chemical structure, and optical properties of the obtained g-C3N4-ZnCdS samples were characterized by a battery of techniques, such as TEM, XRD, XPS, and UV-Vis DRS. The as-synthesized g-C3N4-ZnCdS photocatalyst exhibited the highest hydrogen production rate of 108.9 μmol·g-1·h-1 compared to the individual components (g-C3N4: 13.5 μmol·g-1·h-1, ZnCdS: 45.3 μmol·g-1·h-1). The improvement of its photocatalytic activity can mainly be attributed to the heterojunction formation and resulting synergistic effect, which provided more channels for charge carrier migration and reduced the recombination of photogenerated electrons and holes. Meanwhile, the g-C3N4-ZnCdS heterojunction catalyst also showed a higher stability over a number of repeated cycles. Our work provides insight into using g-C3N4 and metal sulfide in combination so as to develop low-cost, efficient, visible-light-active hydrogen production photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call