Abstract

With the aid of the state-of-the-art Density Functional Theory simulations, triazine-like graphitic carbon nitride or g-C3N4 (abbreviated as gCN hereafter) nanosheet decorated with Y has been explored for reversible hydrogen storage applications in light fuel cell vehicles. The Y atom is found to bind strongly with gCN (binding energy ∼ −6.85 eV), can reversibly store 9 H2 with an average adsorption energy of −0.331 eV/H2, an average desorption temperature of 384.24 K, and a storage capacity of 8.55% by weight, optimum for fuel cell application as prescribed by the Department of Energy. The bonding of Y on gCN involves a charge transfer from Y 4d orbitals to C and N 2p orbitals, whereas the adsorption of H2 is due to Kubas interactions involving net charge transfer from Y 4d orbital to H 1s orbital. We have computed the diffusion energy barrier for Y atoms as 3.07 eV, which may prevent metal-metal clustering. Further, ab-initio molecular dynamics simulation has been performed to check the structural stability of the present system. The system is found to be stable at 500 K with different concentrations of Y doping. The present system with the appropriate average adsorption energy per H2, suitable desorption temperature, and structural stability at higher temperatures is promising for onboard light fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.