Abstract

Composite photocatalysts comprising graphitic carbon nitride (g-C3N4) and graphene materials were synthesized and evaluated in the photocatalysis of bisphenol A (BPA) with a focus on elucidating the reaction mechanism. Embedding reduced graphene oxide (rGO) to g-C3N4 significantly accelerated the photocatalysis rate of BPA by three folds under visible light irradiation at neutral pH. We showed that rGO synthesized in intimate contact with g-C3N4 increased the surface areas and electrical conductivity of the g-C3N4 composites and promoted the electron-hole pair separation. The BPA photodegradation mechanism involved selective oxidants as superoxide (O2•−) and singlet oxygen (1O2) that were formed through one-electron reduction of O2 and the unique oxidation of O2•− by photogenerated hole (h+), respectively. The synthesized photocatalyst exhibited superior visible light photoreactivity to that of N-doped P25 TiO2, good photo-stability and reuse potential, and was operative in complex wastewater. rGO embedded g-C3N4 achieved good photomineralization of BPA at 80% in 4 h compared to 40% of bare g-C3N4. This study sheds light on the photocatalysis mechanism of BPA with a metal-free, promising rGO/g-C3N4 photocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.