Abstract

The synthesis of graphitic carbon nitride (g-C3N4) doped with s-block metals is described. The materials were synthesized via thermal polycondensation of cyanamide and the appropriate metal chloride. The inclusion of the metal precursor strongly influenced the surface chemistry features as well as the textural, morphological, and structural properties of the g-C3N4. The doping of g-C3N4with s-block metals markedly enhanced its adsorption performance, which was studied during the removal of two model solutes (methyl blue and copper ions) from aqueous solutions. The maximum adsorption capacity for the organic dye was increased by 680 times after the doping process. The uptake of copper(II) increased ca. 30 times for the doped g-C3N4. The improvement of the adsorption performance is discussed in terms of the surface chemistry and textural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.