Abstract

Processing methods have been optimized for the formation of graphitic carbon nanofiber (GCNF)/epoxy nanocomposites containing GCNFs highly dispersed throughout a thermoset epoxy matrix. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules (GCNF-HDA) capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using high-power ultrasonication. GCNF-HDA nanofibers are dispersed in epoxy resin at 0.3 wt.% loading using variable levels of ultrasonication processing prior to thermal curing. Effects of sonication power on the quality of the GCNF-HDA/epoxy material obtained after curing have been determined from flexural property measurements, thermomechanical analysis and SEM/TEM imaging. GCNF-HDA/epoxy material of the highest quality is obtained using low-power sonication, although high-power sonication for short periods gives improved flexural properties without lowering the glass transition temperature. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call