Abstract
Different concentrations (2 and 4 wt%) of graphite carbon nitride (g-C3N4) was doped into fixed amount of chitosan (CS) and nickel oxide (NiO) nanoparticles (NPs) via a co-precipitation route. The aim of study is to remove the pollutants from wastewater through catalytic activity (CA) and determine the bactericidal activities of synthesized products. X-ray diffraction pattern confirmed the cubic structure of NiO NPs and peak shifted to higher angle upon g-C3N4 doping. Fourier transform infrared spectroscopy revealed the existence of bending and stretching vibration mode. The absorption decreased gradually accompanied blue-shift and assessed bandgap energy increased upon doping. The high resolution transmission electron microscopy micrographs confirmed the formation of cubic-shaped NPs and elongated nanorods were seen for NiO and co-doped NiO. The catalytic efficiency of samples was examined using methylene blue (MB) in the presence of reducing agent. A remarkable dye de-colorization was confirmed with a g-C3N4 and CS doping; moreover, the bactericidal efficacy compared to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was observed as 3.15 and 13.8 mm, respectively. In silico, molecular docking investigations targeting against b-lactamaseS. aureus and FabHE. coli enzymes assisted to elaborate the mechanism underlying microbicidal action of the NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.