Abstract

AbstractThe quest for supercapacitors that can hold both high energy and power density is of increasing significance as the need for green and reliable energy storage devices grows, for both large‐scale and integrated systems. While supercapacitors for integrated technologies require a solid‐state approach, gel‐based electrolytes are generally not as efficient as their aqueous counterparts. Here, we demonstrate a strategy to enhance the performance of quasi‐solid‐state supercapacitors made by graphitized silicon carbide on silicon electrodes and polyvinyl alcohol (PVA)+H2SO4 gel electrolyte. The electrochemical characterization shows an increase of the specific capacitance of the cell up to 3‐fold resulting from a simple agent‐free, in situ, electrochemical treatment leading to functionalization of the graphitic electrodes. The functionalization of the electrodes simultaneously enables redox reactions, without adding any redox agent, and increases the double layer contribution to the overall capacitance. The strategy and insights offered by this work hold great promise for improving quasi‐solid‐state, miniaturized on‐chip energy storage systems, which are compatible with silicon electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.