Abstract

We study the utility of standard graphites (GAK-2, GL-1, EUZ-M, and others) produced by the Zavalie Integrated Graphite Plant (ZGP) as active materials in lithium-ion batteries (LIBs). The structure and main electrochemical characteristics of these graphites are studied for choosing the best type of graphite and evaluating its utility for LIB production. The electrochemical characteristics of the best ZGP graphites and graphite for batteries produced by Superior Graphite Co. (USA), a worldwide leader of the graphite industry, are compared. Some tendencies in the effect of the structure and particle-size distribution on the electrochemical characteristics of graphite electrodes are determined. EUZ-M graphite modified by tin with amorphous carbon is prepared. The reversible capacity of this graphite in the cell against LiCoO2 exceeds 400 mA h/g. The increased reversible capacity is due to the contribution of components having higher specific parameters; the cycling stability is due to the core-shell structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.