Abstract

1-butanol dehydration reaction has recently emerged as a sustainable route to produce butenes which can be further oligomerized to be applied as jet fuel. However, the high catalyst deactivation rates observed during this reaction due to coke deposition is still a pending matter. As promising catalysts for this reaction, we have supported two heteropolyacids (HPA), i.e. H4SiW12O40 (STA) and H3PW12O40 (TPA), on two commercial carbon materials: an activated carbon (AC) and a high surface area graphite (HSAG). Aiming to evaluate the role of HPA-support interactions, the STA was also dispersed over metallic oxides of different acidic nature, namely SiO2, Al2O3 and ZrO2. An exhaustive physicochemical characterization revealed that after the HPA dispersion thorough the support, the Keggin structure was maintained and an increase in the amount and strength of acid sites was provoked, but in different degree according to the HPA type and support’s nature. While the TPA-based catalysts developed less quantity of total acid sites, but higher strength than their STA-carbon counterparts, the STA/AC and TPA/AC samples exhibited a slight major amount of acid sites than STA/HSAG and TPA/HSAG. The HPA-support interactions have ultimately modulated to some extent the activity, selectivity, stability and regeneration ability of the synthesized catalysts, when applied in the gas phase butanol dehydration reaction at 275 °C. The higher STA decomposition temperature prompted by the graphitic support, among other factors, allowed the total regeneration of the highly active (39 mmolBuOH∙min−1∙ga.p) and n-butenes selective (>98 %) STA/HSAG catalyst by means of combustion of carbon deposits at 400 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call