Abstract

Equilibrium C–O–H fluid speciation calculations predict that graphite will precipitate from initially graphite saturated fluid inclusions during cooling and exhumation of metamorphic rocks. In the case that no mass is gained or lost by the inclusions, the original XO ratio [O/(O+H)] of the fluid phase must be maintained. Given this closed system constraint, the down-temperature progress of graphite precipitation can easily be monitored as a function of the varible XO, and produces some effects that are of significance to fluid inclusion studies: 1. Variation of the H2O : CO2 : CH4 relationship in the graphite-saturated COH fluid, namely increase of XH2O and decrease of the carbonic fraction; 2. Decrease of fluid density due to precipitation of graphite, which is denser than the residual fluid; 3. Alteration of the CO2 : CH4 ratio of the fluid, depending on the initial O : H ratio of the fluid: for XO>1/3, fluids increase their CO2 : CH4 ratio with decreasing temperature, and vice-versa. This implies that the CO2 : CH4 ratio measured at room T will not represent the trapping value, which is in any case closer to unity. As a consequence of density reduction, isochores extrapolated from densities observed at room temperature do not pass through the pressure-temperature conditions at which the inclusion was trapped, with pressure underestimates of up to 2 kbar. Actual P-T trapping conditions are located along the equilibrium “bulk isochore” (curve of constant-XO, constant-volume) of the fluid. Alteration of the CO2 : CH4 ratio is a mechanism by which a CO2-rich or CH4-rich carbonic phase can be formed from aqueous fluids that are slightly off the neutral XO=1/3 value. Subsequent segregation of this phase from the aqueous counterpart may account for the formation of pure CO2 and CH4 fluids in the upper crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.