Abstract

The ubiquitous (Al,Si,Mg)-nitride has been the focus of recent investigations of spheroidal graphite irons. In particular, because they have been systematically found in the nucleus of graphite spheroids. Despite having a similar crystal structure as graphite, their lattice parameter is vastly different. Since the crystallographic match is mainly used to justify the potential of nucleation sites, challenges have been encountered to explain the mechanism of graphite nucleation in this type of inclusion (microparticle). The present work reports the structure, composition, and interactions of these (Al,Si,Mg)-nitrides with graphite and other compounds, such as (Zr,Ti,Nb)-carbonitrides. The latter were the only inclusions with Zr that could be found, while the former inclusion could also be found in the core of graphite. The results confirm that the graphite layers close to the surface of the (Al,Si,Mg)-nitrides have a turbostratic structure. Organized graphite layers are only observed far away from the nitride nucleus. Density functional theory simulations of this interface showed that the interaction between the first graphene layers and the (Al,Si,Mg)-nitrides has a covalent nature, which could explain the turbostratic structure of the inner part of the graphite nodule. Therefore, nucleation of graphite on nuclei with a large lattice mismatch (low planar misfit) may be facilitated by the covalent bonding of carbon atoms on this substrate. These results explain the observed disorder at the interface as well as the deformation of the graphene layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.