Abstract

An improved hybrid vacuum and pressure-assisted infiltration technique was developed for the infiltration of phase change materials (PCM) into the graphite foam matrix. A single chamber with no moving part infiltration setup was designed and fabricated. Pelletized PCM was introduced to provide enough porosity for air removal using vacuum pumps with no need for transfer PCM after melting and infiltration. Simple design, the use of stainless steel, and the corrosion resistance feature of PCM provides a very cost-effective design and easily controllable process. Mixed alkali and alkaline chloride salts as PCM were infiltrated into the high porosity graphite foam to enhance the thermal conductivity of latent heat storage medium. Chloride based PCM with proven corrosion-resistant features, high energy storage density that enables storage and release of energy at nearly constant temperatures close to the melting temperature of 355 °C are used in this study, as an example. The composites of infiltrated graphite foam and chloride salt PCMs were studied using SEM, EDS microstructural analyses to determine the effectiveness of the infiltration process. An infiltration efficiency greater than 90% of the available porosity was achieved. The thermal conductivity of the infiltrated samples was analyzed using a laser Nano-flash thermal conductivity device. The thermal conductivity of the foam/PCM composite was shown to be larger by a factor greater than 40 times of pure chloride PCM (1–2 W/m-K). Low-cost infiltration with proven efficacy and repeatability of infiltrated PCM could be a breakthrough for 3rd generation of CSP plant applications with supercritical CO2 power cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call