Abstract

Emerging wide-bandgap (WBG) semiconductor devices such as silicon carbide (SiC) metal-oxide semiconductor field-effect transistors (MOSFETs) and gallium nitride high-electron-mobility transistors can handle high power in reduced semiconductor areas better than conventional Si-based devices owing to superior material properties. With increased power loss density in a WBG-based converter and reduced die size in power modules, thermal management of power devices must be optimized for high performance. This article presents a graphite-embedded insulated metal substrate (thermally-annealed-pyrolytic-graphite-embedded insulated metal substrate-IMSwTPG) designed for WBG power modules. Theoretical thermal performance analysis of graphite-embedded metal cores is presented, with design details for IMSwTPG with embedded graphite to replace a direct-bonded copper (DBC) substrate. The proposed IMSwTPG is compared with an aluminum nitride-based DBC substrate using finite-element thermal analysis for steady-state and transient thermal performance. The solutions' thermal performances are compared under different coolant temperature and thermal loading conditions, and the proposed substrate's electrical performance is validated with static and dynamic characterization. Using graphite-embedded substrates, junction-to-case thermal resistance of SiC MOSFETs can be reduced up to 17%, and device current density can be increased by 10%, regardless of the thermal management strategy used to cool the substrate. Reduced transient thermal impedance of up to 40% of dies owing to increased heat capacity is validated in transient thermal simulations and experiments. The half-bridge power module's electrical performance is evaluated for on-state resistance, switching performance, and switching loss at three junction temperature conditions. The proposed substrate solution has minimal impact on conduction and switching performance of SiC MOSFETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.