Abstract
Abstract Fe–26Si–9B alloy is a promising high temperature phase change material (HTPCM), due to its high heat of fusion, small volumetric change, abundance, and low cost. Additionally, graphite has been identified as a promising candidate for use as a container material for this alloy. In this study, the feasibility of using graphite for Fe–26Si–9B HTPCM is investigated in a pilot-scale. Specifically, 4–5 kg Fe–26Si–9B master alloys were melted in graphite crucibles using an induction furnace, which underwent 2–3 thermal cycles in the temperature range of 1,100–1,375°C. The results showed that SiC and B4C precipitates were formed in the alloys. However, these carbides were found to be present only on the surface of the solidified alloys and not in the main body. Still, the chemical composition of the Fe–26Si–9B alloy remained relatively stable during the thermal cycles. It was also seen that the graphite crucible withstood the temperature cycles without cracking. Therefore, the use of graphite as a container for Fe–26Si–9B phase change material is a promising approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.