Abstract

This paper discusses a novel annealing technique for 4H-SiC implants which involves the use of pulsed XeCl laser (l=308 nm). In particular, an absorbing graphitic coating is used to protect the sample from surface atoms desorption or phase separation. Both conventional furnace annealing and laser annealing on P and Al implants, commonly employed for source and body in metal-oxide-semiconductor field-effect transistors (MOSFETs), were examined through Transmission Electron Microscopy (TEM), u-Raman spectroscopy and Scanning Electron Microscopy (SEM). It is shown that the implant activated through traditional thermal annealing at 1650 °C for 30 min has a large network of dislocation loops, while they do not appear to be present in the laser annealed implant. Through Raman spectroscopy and SEM investigations both the crystalline quality of the laser annealed sample and the integrity of the surface were attested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call