Abstract

Abstract We study with the Electron Back-Scattered Diffraction (EBSD) technique the fabric of metamorphosed and ductilely deformed phtanites or graphitic cherts, a common lithotype in Ediacaran supracrustals of the west European Cadomian orogen. Currently they are black quartzites with a planolinear tectonite structure. Microscopically they present a sub-mm-scale alternation of coarse- and fine-grained, dynamically recrystallized quartz bands. We attribute intracrystalline plasticity partitioning to variations in graphite inclusion concentration constraining quartz grain boundary mobility during dynamic recrystallization under non-coaxial strain regimes and moderate to elevated temperatures (400–650 °C). Lattice-preferred orientations of quartz [c] and axes are geometrically related to the external reference frame provided by foliations and lineations. We also identify the involvement of (0001) , {r} , {m} , and {m}[c] quartz intracrystalline slip systems. Deformation modes operated simultaneously and under identical temperatures in interleaved parallel domains mm- to cm-thick in adjacent coarse- and fine-grained bands. Medium- to high-T plasticity is congruent with the syntectonic temperature gradients associated with the amphibolite-facies metamorphism of the country rocks. We also present the first specific study published so far on natural deformation graphite lattice-preferred orientation. Graphite inclusions (as well as those of mica) exhibit mineral shape fabrics that suggest operation of (0001) slip. However, EBSD measurements also record fabrics suggestive of {m} slip. In spite of a rather small volumetric proportion, graphite spatial organization at increased shear strains facilitated ductile deformation. If a graphite network is established in the rock, it can potentially increase rock electrical conductivity, thus accounting for mid and lower crust anomalous electric conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.