Abstract

Methods for comparing designs for a random (or mixed) linear model have focused primarily on criteria based on single-valued functions. In general, these functions are difficult to use, because of their complex forms, in addition to their dependence on the model's unknown variance components. In this paper, a graphical approach is presented for comparing designs for random models. The one-way model is used for illustration. The proposed approach is based on using quantiles of an estimator of a function of the variance components. The dependence of these quantiles on the true values of the variance components is depicted by plotting the so-called quantile dispersion graphs (QDGs), which provide a comprehensive picture of the quality of estimation obtained with a given design. The QDGs can therefore be used to compare several candidate designs. Two methods of estimation of variance components are considered, namely analysis of variance and maximum-likelihood estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.