Abstract
A method for dealing with multivariate analysis of marked spatio-temporal point processes is presented by introducing different partial point characteristics, and by extending the spatial dependence graph model formalism. The approach yields a unified framework for different types of spatio-temporal data, including both, purely qualitatively (multivariate) cases and multivariate cases with additional quantitative marks. The proposed graphical model is defined through partial spectral density characteristics; it is highly computationally efficient and reflects the conditional similarity amongst sets of spatio-temporal sub-processes of either points or marked points with identical discrete marks. Two applications, on crime and forestry data, are presented.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.