Abstract


 
 
 We describe algorithms for use by prediction markets in forming a crowd consensus joint probability distribution over thousands of related events. Equivalently, we describe market mechanisms to efficiently crowdsource both structure and parameters of a Bayesian network. Prediction markets are among the most accurate methods to combine forecasts; forecasters form a consensus probability distribution by trading contingent securities. A combinatorial prediction market forms a consensus joint distribution over many related events by allowing conditional trades or trades on Boolean combinations of events. Explicitly representing the joint distribution is infeasible, but standard inference algorithms for graphical probability models render it tractable for large numbers of base events. We show how to adapt these algorithms to compute expected assets conditional on a prospective trade, and to find the conditional state where a trader has minimum assets, allowing full asset reuse. We compare the performance of three algorithms: the straightforward algorithm from the DAGGRE (Decomposition-Based Aggregation) prediction market for geopolitical events, the simple block-merge model from the SciCast market for science and technology forecasting, and a more sophisticated algorithm we developed for future markets.
 
 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.