Abstract
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.