Abstract
Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance of social network sites, time series data over latent graph is becoming increasingly popular. In this article, we develop a novel Bayesian grouped network autoregression model, which can simultaneously estimate group information (number of groups and group configurations) and group-wise parameters. Specifically, a graphically assisted Chinese restaurant process is incorporated under the framework of the network autoregression model to improve the statistical inference performance. An efficient Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real datasets as illustrations of the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.