Abstract

A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing.

Highlights

  • Arsenic is highly toxic in the +3 and +5 oxidation state, and is widely present in the environment through leaching from soils, mining activities, fertilizers, industrial wastes, biological activity, and naturally occurring As containing minerals [1,2]

  • In continuation of our efforts to this end, we report a simple one-pot hydrothermal method to prepare a graphene nanoplates-supported spinel CuFe2 O4 (GNPs/CuFe2 O4 ) composite

  • These results demonstrated a significant improvement in adsorption with the incorporation of

Read more

Summary

Introduction

Arsenic is highly toxic in the +3 and +5 oxidation state, and is widely present in the environment through leaching from soils, mining activities, fertilizers, industrial wastes, biological activity, and naturally occurring As containing minerals [1,2]. Long-term ingestion and drinking of arsenic contaminated food or water are linked to kidney, skin and lung cancers [3,4,5,6]. It is of continued importance to remove arsenic from contaminated water, and to provide safe drinking water below the maximum concentration recommended by WHO (

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call