Abstract

Transition metal and nitrogen (N) doped carbon materials are regarded as promising alternatives to expensive Pt-based catalysts for oxygen reduction reaction (ORR), thanks to their natural abundance, good stability and high energy conversion efficiency. Herein, a facile efficient pyrolysis approach was developed to prepare graphene-encapsulated Co nanoparticles (NPs) embedded in porous nitrogen-doped graphitic carbon nanosheets (Co@G/N-GCNs), in which g-C3N4 served as C and N sources, and cobalt phthalocyanine (CoPc) as the Co- and N-sources. The as-obtained catalyst exhibited exceptional ORR activity (E1/2 = 0.86 V vs. RHE), good durability (12 mV negative shift of E1/2 after 2000 cycles), and strong methanol resistance, surpassing those of commercial Pt/C catalyst in alkaline conditions. The pyrolysis temperature and entrapped contents of metal NPs had critical impacts on the ORR features. This work offers a feasible strategy for designing low-cost non-noble-metal catalysts for energy storage and conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.