Abstract

Triboelectric nanogenerators (TENGs), as novel electronic devices for converting mechanical energy into electrical energy, are better suited as signal-testing sensors or as components within larger wearable Internet of Things (IoT) or Artificial Intelligence (AI) systems, where they handle small-device power supply and signal acquisition. Consequently, TENGs hold promising applications in self-powered sensor technology. As global energy supplies become increasingly tight, research into self-powered sensors has become critical. This study presents a self-powered sport sensor system utilizing a triboelectric nanogenerator (TENG), which incorporates a thermoplastic polyurethane (TPU) film doped with graphene and polytetrafluoroethylene (PTFE) as friction materials. The graphene-doped TPU nanocomposite film-based TENG (GT-TENG) demonstrates excellent working durability. Furthermore, the GT-TENG not only consistently powers an LED but also supplies energy to a sports timer and an electronic watch. It serves additionally as a self-powered sensor for monitoring human movement. The design of this self-powered motion sensor system effectively harnesses human kinetic energy, integrating it seamlessly with sport sensing capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.