Abstract

In this study, the impact of graphene-doped poly(vinyl alcohol) hydrogels on gel-valve-regulated lead acid batteries was examined. The gel formulations were made by adding various amounts of graphene into the gel system comprising poly(vinyl alcohol) and sulfuric acid. Gel formulations were subjected to an ionic conductivity study and Fourier transform infrared spectroscopy (FTIR) to understand ionic mobility and material interaction, respectively. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) were utilized to find the optimized amount of graphene in gel formulations. Galvanostatic charge-discharge (GCD) techniques were employed on a battery comprising an optimized gel electrolyte. The battery exhibited a discharge capacity of 12.82 mAh at a current density of 15 mA cm-2. After 500 prolonged cycles, the battery displayed a discharge capacity of 87% at 25 mA cm-2 current density, indicating that graphene-doped hydrogels can be a promising gel electrolyte for lead acid batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.