Abstract

Bismuth sulphide (Bi2S3) nanorods doped with graphene (G) were synthesized and explored as photoactive materials for constructing a photoelectrochemical (PEC) aptasensor for sulfadimethoxine (SDM) detection. The formation of Bi2S3 nanorods and G nanosheets was observed by scanning electron microscopy (SEM) and further characterized by X-ray diffraction (XRD) spectroscopy. The PEC measurements indicated that the photocurrent response of Bi2S3 was obviously improved by doping suitable amount of G. The G-Bi2S3 composite coated electrode was utilized for fabricating a PEC aptasensor by covalently immobilizing a 5′-amino-terminated SDM aptamer on the electrode surface. Based on the specific interaction between SDM and the aptamer, a PEC sensor responsive to SDM was obtained. Under optimal conditions, the proposed sensor showed a linear photocurrent response to SDM in the concentration range of 1.0–100nM, with a low detection limit (3S/N) of 0.55nM. Moreover, the sensor showed high sensitivity, stability and reproducibility. The potential applicability of the PEC aptasensor was confirmed by detecting SDM in veterinary drug formulation and milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call