Abstract
A nanocrystalline LiFePO4/graphene-carbon nanotubes (LFP-G-CNT) composite has been successfully synthesized by a hydrothermal method followed by heat-treatment. The microstructure and morphology of the LFP-G-CNTs composite were comparatively investigated with LiFePO4/graphene (LFP-G) and LiFePO4/carbon nanotubes (LFP-CNT) by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LFP-G-CNTs nanoparticles were wrapped homogeneously and loosely within a 3D conducting network of graphene-carbon nanotubes. The conducting networks provided highly conductive pathways for electron transfer during the intercalation/deintercalation process, facilitated electron migration throughout the secondary particles, accelerated the penetration of the liquid electrolyte into the LFP-G-CNT composite in all directions and enhanced the diffusion of Li ions. The results indicate that the electrochemical activity of LFP-G-CNT composite may be enhanced significantly. The charge-discharge curves, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) results demonstrate that LFP-G-CNT composite performes better than LFP-G and LFP-CNT composites. In particular, LFP-G-CNT composite with a low content of graphene and carbon nanotubes exhibites a high initial discharge capacity of 168.4 mAh g−1 at 0.1 C and 103.7 mAh g−1 at 40 C and an excellent cycling stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.