Abstract

A wavelength demultiplexing (WDM) structure based on graphene nanoribbon resonators is proposed and simulated using the finite-difference time-domain (FDTD) method. Based on a simple structure, the demultiplexing wavelength and transmission characteristics of the WDM can be tuned by adjusting the length of the resonator, the nanoribbon width, or the chemical potential of graphene within a relative broadband frequency range. Moreover, the mechanism of the proposed WDM structure is analyzed in detail using the theory of Fabry-Perot (F-P) resonance and temporal coupled-mode theory. The proposed structure has promising potential in the field of ultracompact WDM systems in highly integrated optical circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.