Abstract

Surface-enhanced Raman scattering (SERS) has received increasing attention from researchers since it was first discovered on rough silver electrode surfaces in 1974 and has promising applications in life sciences, food safety, and environmental monitoring. The discovery of graphene has stirred considerable waves in the scientific community, attracting widespread attention in theoretical research and applications. Graphene exhibits the properties of a semi-metallic material and has also been found to have Raman enhancement effects such as in metals. At the same time, it quenches the fluorescence background and improves the ratio of a Raman signal to a fluorescence signal. However, graphene single-component substrates exhibit only limited SERS effects and are difficult to use for trace detection applications. The common SERS substrates based on noble metals such as Au and Ag can produce strong electromagnetic enhancement, which results in strong SERS signals from molecules adsorbed on the surface. However, these substrates are less stable and face the challenge of long-term use. The combination of noble metals and graphene to obtain composite structures was an effective solution to the problem of poor stability and sensitivity of SERS substrates. Therefore, graphene-based SERS has been a popular topic within the last decade. This review presents a statistically based analysis of graphene-based SERS using bibliometrics. Journal and category analysis were used to understand the historical progress of the topic. Geographical distribution was used to understand the contribution of different countries and institutions to the topic. In addition, this review describes the different directions under this topic based on keyword analysis and keyword co-occurrence. The studies on this topic do not show a significant divergence. The researchers’ attention has gradually shifted from investigating materials science and chemistry to practical sensing applications. At the end of the review, we summarize the main contents of this topic. In addition, several perspectives are presented based on bibliometric analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call