Abstract

Establishing "large-contact-area" interfaces of sensitive nanostructures with microbes and mammalian cells will lead to the development of valuable tools and devices for biodiagnostics and biomedicine. Chemically modified graphene (CMG) nanostructures with their microscale area, sensitive electrical properties, and modifiable chemical functionality are excellent candidates for such biodevices at both biocellular and biomolecular scale. Here, we report on the fabrication and functioning of a novel CMG-based (i) single-bacterium biodevice, (ii) label-free DNA sensor, and (iii) bacterial DNA/protein and polyelectrolyte chemical transistor. The bacteria biodevice was highly sensitive with a single-bacterium attachment generating approximately 1400 charge carriers in a p-type CMG. Similarly, single-stranded DNA tethered on graphene hybridizes with its complementary DNA strand to reversibly increase the hole density by 5.61 x 1012 cm(-2). We further demonstrate (a) a control on the device sensitivity by manipulating surface groups, (b) switching of polarity specificity by changing surface polarity, and (c) a preferential attachment of DNA on thicker CMG surfaces and sharp CMG wrinkles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.