Abstract

Graphene (G) is attracting significant attention because of its unique physical and electronic properties. The production of graphene through the reduction of graphene oxide (GO) is a low-cost method. The reduction of GO can further lead to electrically conductive reduced GO. These graphene-based nanomaterials are attractive for high-performance water sensors due to their unique properties, such as high specific surface areas, high electron mobilities, and exceptionally low electronic noise. Because of potential risks to the environment and human health arising from heavy-metal pollution in water, G-/GO-based water sensors are being developed for rapid and sensitive detection of heavy-metal ions. In this review, a general introduction to graphene and GO properties, as well as their syntheses, is provided. Recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are then highlighted. Finally, challenges facing G/GO-based water sensor development and outlook for future research are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.