Abstract

Graphene nanosheets (GNs) were synthesized and used as a substitute for platinum as counter-electrode materials for dye-sensitized solar cells (DSSCs). The as-synthesized GNs were dispersed in a mixture of terpineol and ethyl cellulose. GN films were screen-printed on fluorine-doped tin oxide (FTO) slides using the formed GN dispersions. GN counter-electrodes were produced by annealing the GN films at different temperatures. The annealed GN films revealed an unusual 3D network structure. Structural and electrochemical properties of the formed GN counter-electrodes were examined by field emission scanning electron microscopy, Raman spectroscopy and electrochemical impedance spectroscopy. It was found that the annealing temperature of GN materials played an important role in the quality of the GN counter-electrode and the photovoltaic performance of the resultant DSSC. The grown DSSCs with graphene-based counter-electrodes exhibited a conversion efficiency high up to 6.81%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call