Abstract

Printed-electronics inks belong to a class of novel functional conductive inks that can be used to form high-precision conducting lines or circuits on various flexible substrates. Previous studies have reported conductive inks produced by the reduction and membrane separation method for use in flexible devices. However, it remains a challenge to synthesize conductive inks with high electrical properties at low sintering temperatures, which restricts their range of applications. Herein, we prepare inkjet-printed patterns of conductive inks consisting of Ag nanohexagonal platelets (AgNHPs) as the main component and containing graphene (GE) in different contents. It is found that GE improves the electrical conductivity of the patterns when sintering is done at relatively low temperatures. For instance, when the GE content is 0.15 mg ml−1, the resistivity is the lowest. When sintering is done at 150 °C, the resistivity (2.7 × 10–6 Ω · cm) of the GE-AgNHPs conductive ink (GE: 0.15 mg ml−1) is 14% of that of the AgNHPs conductive ink; on the other hand, after sintering at 50 °C, this ratio is 2%. It is also found that, with the increase in GE content, the resistivity of the GE-AgNHPs conductive ink increases. This study on GE-AgNHPs conductive inks sintered at low temperatures should further the development of flexible touch screens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.